If it's not what You are looking for type in the equation solver your own equation and let us solve it.
80^2+18^2=c^2
We move all terms to the left:
80^2+18^2-(c^2)=0
We add all the numbers together, and all the variables
-1c^2+6724=0
a = -1; b = 0; c = +6724;
Δ = b2-4ac
Δ = 02-4·(-1)·6724
Δ = 26896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{26896}=164$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-164}{2*-1}=\frac{-164}{-2} =+82 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+164}{2*-1}=\frac{164}{-2} =-82 $
| 10x+17x-6+5=-5x+5-6 | | 6(x-8)+42=6x-6 | | 7(2x+5)=3x−9 | | 8(x-5)=75 | | 17x-45=11x+9 | | -3(-4x+4)+3x-1=−28 | | 1/3(2b+9)=2/3b+3 | | y=18-2y | | 2/3×+4/5x=44 | | 3x(x-5)(2x-3)=0 | | 430=25x-10x+250 | | 25+9p=52 | | -4/3v=28 | | 50^2+b^2=30^2 | | 50-5y=22 | | -5(2x-3)=2(x-12)-9 | | 2x+x+27=180 | | 12t=50t-200 | | 20+2x=3(-x+4)-32 | | 6^2+b^2=^2 | | 5n+0=30 | | 2(x+11)=46 | | 1+2=x-4 | | 27/x=0 | | -38t=50t-200 | | X-3(2x-8)=-8 | | 18=v/5-6 | | 12x÷84=120 | | 35^2+b^2=21^2 | | 15c+3c-16c=10 | | 5(n+3)=(-55)-6(n-8) | | y=3(4(3)-5) |